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FULLY SCALABLE COMPUTER
ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority from U.S. Provi-
sional Patent Application Ser. No. 60/248,911, entitled:
Fully Scalable Computer Architecture for Parallel Discrete
Event Simulations filed on Nov. 14, 2000, the contents of
which are incorporated herein by reference.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

This invention was made with government support under
Contract No. DMR-9871455 awarded by the National Sci-
ence Foundation. The government may have certain rights in
this invention.

FIELD OF THE INVENTION

The present invention relates to multi-processor computer
architectures and, more particularly, to multi-processor com-
puter architectures for performing system simulations.

BACKGROUND OF THE INVENTION

Modeling and analysis of the time behavior of dynamic
systems is of wide interest in various fields of science and
engineering. Because of the complexity of many current
dynamic systems, “realistic models” of such dynamic sys-
tems often prohibit exact numerical or analytical evaluation
of the system. For example, in an extremely wide variety of
applications in military, civilian, and scientific computations
such as for “war scenarios,” video games and queueing
theory with applications to banking, cellular networks, wire-
less networks, manufacturing design, aircraft design and
scientific computing, the dynamic systems running the
applications are too complex to perform numerical or ana-
lytical evaluations on the systems. As a result, simulation of
such systems generally remains the accepted tractable
method by which to evaluate the systems. One type of
simulation that has emerged is Discrete Event Simulation
(DES), which discretizes the updates of the simulated sys-
tem at event occurrence instances.

While the simulation of such complex systems generally
remains the accepted tractable method by which to evaluate
the systems, conducting simulations is often a time consum-
ing experience. In this regard, once a simulation model has
been specified for the system, the simulation run can require
an unnecessarily long time to execute due to either the
objective of the simulation or the nature of the simulation
model. To reduce the time necessary to execute a simulation,
importance sampling methods can be implemented in the
model. As such, faster simulations can be obtained by using
more computational resources, particularly, modem super-
computers that utilize multiple processing elements (PEs)
operating in parallel.

To efficiently utilize modem supercomputers requires
massively parallel implementations of dynamic algorithms
for various physical, chemical, and biological processes. For
many of these there are well-known and routinely used
schemes, such as serial Monte Carlo (MC) schemes.
Dynamic MC simulations are invaluable tools for investi-
gating the evolution of complex systems. For a wide range
of systems it is plausible to assume (and in rare cases it is
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possible to derive) that attempts to update the state of the
system form a Poisson process. The basic notion is that time
is continuous, and the discrete events (update attempts)
occur instantaneously. The state of the system remains
constant between events. It is worthwhile to note that the
standard random-sequential update schemes (easily imple-
mentable on serial computers) produce this dynamic for
“free”: the waiting-time distribution for the attempts to
update each subsystem or component is geometrical and
approaches the exponential distribution in the large-system
limit. This uniquely characterizes the Poisson process.

The parallel implementation of such dynamic MC algo-
rithms belongs to the class of parallel discrete event simu-
lation (PDES), which is one of the most challenging areas in
parallel computing and has numerous applications not only
in the physical sciences, but also in computer science,
queueing theory, and economics. For example, in lattice
Ising models the discrete events are spin-flip attempts, while
in queueing systems they are job arrivals. Typically, when a
PDES is executed, the PDES repeatedly processes the occur-
rence of events in simulated time, or “virtual time,” by
maintaining a time ordered event list holding time-stamped
events scheduled to occur in the future, a clock indicating
the current time and state variables defining the current state
of the system.

Since current special- or multi-purpose parallel computers
can have 10°-10° PEs, it would be desirable to design a
parallel computer providing for scalability of these algo-
rithms, in both the computation phase and measurement
phase of PDES. In this regard, the PDES algorithm is
considered scalable if the physical time required to execute
the algorithm does not change as the system to be simulated
and the number of PEs available both become N times larger.
Additionally, as computers become more complex and the
PEs become numerous, it would be desirable to design a
system that is not only fully scalable with respect to PDES,
but is also scalable with respect to the number of connec-
tions between PEs while requiring as few connections
between PEs as possible.

SUMMARY OF THE INVENTION

In light of the foregoing background, the present inven-
tion provides systems and methods that facilitate fully
scalable simulations, such as PDES. The systems and meth-
ods facilitate the fully scalable simulations while keeping
the number of connections between processing elements
small and independent of the number of processing elements
in the system (thus making the system scalable as to the
connections between processing elements).

According to one embodiment, a scalable computer archi-
tecture capable of performing fully scalable simulations
includes a plurality of processing elements (PEs) and a
plurality of interconnections between the PEs capable of
interconnecting the PEs. The PEs can be interconnected in a
one-dimensional topology, or the PEs can be interconnected
in a multi-dimensional topology with a dimension greater
than one. In this regard, the interconnections can intercon-
nect each processing element to each neighboring process-
ing element located adjacent the respective processing ele-
ment. Further, at least one interconnection can interconnect
at least one processing element to at least one other pro-
cessing element located remote from the respective at least
one processing element.

To make the connectivity of the architecture scalable, the
number of interconnections between processing elements is
independent of the number of processing elements. Addi-
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tionally, to facilitate the scalability of the simulations, at
least two interconnections connect each processing element
to at least two other processing elements, with at least one
additional interconnection interconnecting at least one pro-
cessing element to at least one other processing element
located remote from the respective at least one processing
element. For example, the interconnections can interconnect
the plurality of processing elements according to a fractal-
type method, or according to a quenched random method.
Further, to facilitate scalability of the measurement phase of
the simulation, the plurality of interconnections can include
at least one interconnection at each length scale of the
plurality of processing elements.

The present invention also provides a method of fabri-
cating a scalable computer architecture capable of perform-
ing fully scalable simulations. According to one embodi-
ment, the method begins by organizing the PEs, such as in
a one-dimensional or higher-dimensional topology. Then,
the PEs are interconnected, such as according to the fractal-
type method or the quenched random method, such that the
number of other PEs interconnected to each PE is indepen-
dent of the number of PEs. In this regard, each PE is
interconnected to at least two other PEs, with at least one PE
further interconnected to at least one additional PE located
remote from the respective at least one PE. Further, the PEs
can be interconnected such that at least one pair of process-
ing elements are interconnected at a plurality of length
scales of the plurality of processing elements.

Therefore, the present invention provides a scalable com-
puter architecture. The architecture of the present invention
includes a small number of interconnections between PEs
that are independent of the number of PEs. In this regard, the
present invention provides a scalable computer architecture
and method of interconnecting PEs in a multi-processor
computer that makes both the computational and measure-
ment phases of simulations scalable, while also making the
connectivity of PEs scalable. Additionally, the architecture
of the present invention requires only a few connections to
each PE, thus making the architecture less complex than
other architectures requiring each PE interconnected to
every other PE.

BRIEF DESCRIPTION OF THE DRAWINGS

Having thus described the invention in general terms,
reference will now be made to the accompanying drawings,
which are not necessarily drawn to scale, and wherein:

FIG. 1A-1C are schematic diagrams illustrating one
embodiment of the architecture of the present invention
including exemplar connections between PEs;

FIG. 2 is a graph illustrating a linear-linear scale com-
parison of the stationary width, <w”>, versus the number of
PEs, L, according to one embodiment of the present inven-
tion;

FIG. 3 is a graph illustrating the comparison illustrated in
FIG. 2 on a log-log scale;

FIG. 4 is a graph illustrating that the average density of
local minima, <u>;, of the PEs decreases with the probabil-
ity that a PE checks the “virtual time” of a third connection,
according to one embodiment of the present invention;

FIG. 5 is a graph illustrating that <w*> decreases as the
probability of checking the third connection increases,
according to one embodiment of the present invention;

FIG. 6 is a graph showing how <u>, grows as the number
of lattice sites on each PE grows, with each PE not including
the third connection, according to one embodiment of the
present invention; and
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FIG. 7 is a graph showing how <w”> grows as the number
of lattice sites on each PE grows, with each PE not including
the third connection, according to one embodiment of the
present invention.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention now will be described more fully
hereinafter with reference to the accompanying drawings, in
which preferred embodiments of the invention are shown.
This invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi-
ments set forth herein; rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the invention to those
skilled in the art. Like numbers refer to like elements
throughout.

The following description will demonstrate how the archi-
tecture of the present invention can be utilized to perform
fully scalable PDES. It should be understood, however, that
the architecture can be utilized to perform any number of
different simulations without departing from the spirit and
scope of the present invention. As previously stated, when a
PDES is executed sequentially, the PDES repeatedly pro-
cesses the occurrence of events in simulated time, or “virtual
time,” by maintaining a time ordered event list holding
time-stamped events scheduled to occur in the future, a
clock indicating the current time and state variables defining
the current state of the system. In this regard, the difficulty
of PDES is that update attempts are not synchronized by a
global clock. In fact, the traditional dynamic MC algorithms
were long believed to be inherently serial, i.e., in spin
language, the corresponding algorithm was thought to be
able to update only one spin at a time. But an approach for
parallel simulation of these has been presented that does not
change the underlying Poisson process. Applications include
modeling of cellular communication networks, particle
deposition, and metastability and hysteresis in kinetic Ising
models. In a distributed massively parallel scheme each PE
carries a subsystem of the full system. The parallel algorithm
must concurrently advance the Poisson streams correspond-
ing to each subsystem without violating causality. This
requires the concept of virtual time, as well as a synchro-
nization scheme. Intuitively it is clear that systems with
short-range interactions contain a substantial amount of
parallelism. For the “conservative” approach of DES, the
efficiency of the algorithm is simply the fraction of PEs that
are guaranteed to attempt the update without breaking
causality. The rest of the PEs must idle.

Consider a computer architecture with PEs in an d-di-
mensional hypercubic regular lattice topology where the
underlying PEs have only nearest-neighbor interactions
(e.g., Glauber spin-flip dynamics) and periodic boundary
conditions. Also, consider the scalability for a “worst-case”
scenario in which each PE hosts a single site (e.g., one spin)
of the underlying system. While this may be the only
scenario for a special-purpose computer with extremely
limited local memory, one PE can generally host a block of
sites on architectures with relatively large memory to
thereby substantially increase the efficiency of the underly-
ing system, bringing it to the level of practical applicability.

In a conventional parallel scheme, each PE generates its
own virtual time for the next update attempt. The set of local
times {T,(t)}*",_; constitute the virtual time horizon. Here, L
is the linear size of the lattice (L is the number of PEs), and
t is the index of the simultaneously performed parallel steps.
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Initially, T{0)=0 for every site. At each parallel time step,
only those PEs for which the local simulated time is not
greater than the virtual times of their nearest neighbor can
attempt the update and increment their virtual time by an
exponentially distributed random amount, m(t). Without
loss of generality we take <m(t)>=1. The other PEs idle. Due
to the continuous nature of the random virtual times, for t>0
the probability of equal-time updates for any two sites is of
measure zero. The comparison of the nearest-neighbor vir-
tual times and idling, if necessary, enforces causality. Since
at worst the PE with the absolute minimum simulated time
makes progress, the algorithm is free from deadlock. For
such a basic conservative scheme, the theoretical efficiency
(ignoring communication overheads) is simply the fraction
of non-idling PEs. This corresponds to the density of local
minima of the virtual time horizon. At this point it should be
noted that the evolution of the virtual time horizon is
completely independent of the underlying model (except for
its topology) and can be written as:

nie+ D=r0+ || 0@m-nomo W

epin
JeDj

Here D;™ is the set of nearest neighbors (nn) i, and ©(') is
the Heaviside step function. The evolution of the simulated
time horizon is clearly analogous to an irreversibly growing
and fluctuating surface.

At this point, to examine the scalability of the PDES, two
quantities need to be studied. The first quantity is the density
of local minima, <u(t)>;, and, in particular, its asymptotic
(or steady-state) value and finite-size effects. The density of
local minima is important because the density of local
minima corresponds directly to the efficiency of the algo-
rithm. The second quantity is the surface width,

WA(Q>=(L<E L OO,
HO=(/LYZ, 5 ).

where

The surface width describes the macroscopic roughness of
the time horizon and has important consequences for actual
implementations (e.g., optimal buffer size for a collecting
statistics network).

Now consider the case of a one-dimensional computer
architecture topology, i.e., d=1, with only nearest-neighbor
interactions (e.g., Glauber spin-dynamics) and periodic
boundary conditions. For d=1, it can be shown that by
coarse-graining and direct simulation of equation (1), the
evolution of the simulated time horizon belongs to the KPZ
(Kardar, Parisi and Zhang) universality class for non-equi-
librium surface growth. In this regard, <w”> saturates at a
stationary value for every finite value of PEs. At the same
time the density of local minima, <u(t)>,, decreases mono-
tonically with time towards a long-time asymptotic limit
well separated from zero. The steady state is governed by the
Edwards-Wilkinson Hamiltonian, and the stationary width
scales as <w>>~1.**, where a.=Y% is the roughness exponent.
In this regard, the coarse-grained landscape is a simple
random-walk surface; the local slopes are short-range cor-
related, and the density of local minima is non-zero. Thus,
for the computation phase of PDES, all one-dimension, i.e.,
d=1, PDES algorithms are scalable if the PDES algorithms
have only short-ranged interactions and are implemented
with a computer architecture having multiple PEs connected
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in a one-dimensional pattern. It is important to note that this
characteristic is independent of the underlying size of the
system being simulated.

In higher-dimensional computer architecture topologies,
the same qualitative behavior observed is the same as that
observed for the one-dimensional topology. In this regard,
the surface roughens and saturates for any finite system.
Simultaneously, the density of local minima decreases
monotonically towards its asymptotic (t—>c) finite-size
value. Again, the steady-state density of local minima
appears to be well separated from zero. As such, the com-
putation phase of PDES is also scalable for PDES in
higher-dimensional computer architecture topologies, pro-
vided only short-ranged interactions are present between
PEs, and the connectivities of the PEs are at least the
dimension of the system being simulated.

As stated, short-ranged interactions allow the computa-
tion phase of the PDES to be scalable. But the short-ranged
connections between the PEs also, undesirably, make the
measurement phase of the PDES not scalable. As stated
before, the stationary width, <w?>, grows with the number
of PEs, ie., <w*>~L**. As long as <w”> grows with the
problem’s size, the complete PDES is not scalable. If every
PE is connected to every other PE and checks the “virtual
time” of a randomly chosen PE at regular intervals, however,
then <w®> does not grow with the problem size. Such a
connection pattern can generally be referred to as an
“annealed random” pattern.

While an annealed random pattern of PE connections
makes both the computational and measurement phases of
PDES scalable, the annealed random pattern makes the
connectivity pattern grow as the number of PEs grow, thus
making the connectivity of the computer architecture not
scalable. Further, connecting each PE to all other PEs
requires an unnecessarily large amount of connections
within the system. As such, the present invention provides a
scalable system and method of interconnecting PEs in a
multi-processor computer that makes both the computa-
tional and measurement phases of simulations, including
PDES, scalable, while also making the connectivity of PEs
small and scalable (i.e., keeping the number of interconnects
between PEs independent of the number of PEs).

Referring to FIGS. 1A-1C, one-dimensional PDES can be
implemented in a scalable computer architecture 10 by
interconnecting each PE 12 to two or more PEs, with at least
one PE further interconnected to at least one additional PE
located remote from the respective at least one PE. The
computer architecture can include any number of PEs but, in
a preferred embodiment, the computer architecture includes
a large number of PEs, numbering from the thousands to tens
of thousands or more. As shown, to make the measurement
phase of the PDES scalable, the architecture includes inter-
connects at a plurality of length scales, and preferably each
length scale, between the PEs. For example, some intercon-
nects will be short in length and interconnect neighboring
PEs, while other interconnects will be long in length and
interconnect PEs remote from each other at opposing sides
of the architecture. The interconnects can be obtained in a
variety of different manners, such as by using a “fractal-
type” topology or a “quenched random” topology between
PEs. In this regard, a fractal-type topology includes PEs
interconnected irregularly at all scales of measurement
between a greatest and smallest scale such that each PE is
connected to three or more other PEs. The quenched random
topology includes PEs that are randomly connected to three
or more PEs and thereafter fixed in place. Because the
annealed topology has each PE connected to each other PE,
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the annealed topology can be viewed as a lower bound for
the width of the virtual time horizon of the PDES. In this
regard, because the quenched random topology has virtual
time horizon widths that closely follow those of the annealed
topology, in a preferred embodiment the PEs are connected
according to the quenched random topology.

As illustrated with respect to three connections between
PEs, consider the PEs connected on a line, with each PE 12
connected to each nearest-neighbor PE. Additionally, each
PE is connected to at least one additional, remote PE (one as
illustrated). It should be understood that although the PEs on
each end of the line illustrated have no outermost neighbor,
the outermost PEs would typically be connected to each
other as their respective outermost neighbor connection. As
shown, FIG. 1A illustrates an architecture where the number
of PEs increase by 2x3"=2, 6, 18, . . . Similarly, FIG. 1B
shows another exemplar architecture having PEs that
increase by 4x5"=4, 20, 100, . . . And FIG. 1C shows an
architecture having 2"=2, 4, 8, 16, 32, . . . PEs.

Attention is now drawn to FIG. 2, which illustrates a
linear-linear scale graph of the stationary width, <w?>,
versus the number of PEs, L, in one exemplar embodiment.
In this embodiment, each PE in the architecture includes
four lattice sites. If the lattice site is at the end of the four-site
sequence, the PE checks the virtual time of the PE for which
the respective lattice site is the neighbor. But if the lattice
site is in the middle of the four-site sequence, then 10% of
the time the PE checks the virtual time of the PE given by
the third connection. As shown, as an upper bound, <w*>
grows faster than the number of PEs when no additional
connections are present between the PEs (line 14). As the
lower bound, annealed connections show, the <w”> essen-
tially remains constant as the number of PEs grow (line 16).
Also, between the upper and lower bounds, the graph
illustrates fractal topologies having 2x3” PEs (line 20), 4x5™
PEs (line 22) and 2" PEs (line 24). As shown, the fractal
topologies have a <w”> that grows slower than a power law
and, for a large enough number of PEs, L, the <w”> may
become independent of L, thereby making the PDES algo-
rithm scalable. As such, the number of PEs is preferably
large, numbering from the thousands to tens of thousands. It
is possible for any one of the fractal topologies that <w*>
grows logarithmically with L. In this regard, FIG. 3 illus-
trates the same results as FIG. 2 on a log-log scale.

FIG. 4 illustrates that the average density of local minima,
<u>;, of the PEs, which corresponds directly to the effi-
ciency of the algorithm, decreases with the probability that
a PE checks the “virtual time” of the third connection. In this
regard, the probability for the topologies illustrated in FIGS.
2 and 3 is 10%. Note that FIG. 4 shows that the calculation
portion of the PDES remains scalable for any probability
since <u>; remains finite as the number of PEs grows. FIG.
5 shows that <w”> decreases as the probability of checking
the third connection increases.

Referring now to FIGS. 6 and 7, it is informative to show
how <U>, grows (FIG. 6) and <w*> grows (FIG. 7) as the
number of lattice sites on each PE grows, with each PE not
including the third connection. As shown, as the number of
computations completed by a PE without the need to check
neighboring PEs grows, the efficiency increases, but the
scalability of the measurement phase decreases.

The present invention therefore provides a scalable com-
puter architecture. While the conventional annealed random
pattern of PE connections makes both the computational and
measurement phases of simulations scalable, the annealed
random pattern makes the connectivity pattern grow as the
number of PEs grow, thus making the connectivity of the
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computer architecture not scalable. As such, the present
invention provides an architecture including a small number
of interconnections between PEs that are independent of the
number of PEs. In this regard, the present invention provides
a scalable computer architecture and method of intercon-
necting PEs in a multi-processor computer that makes both
the computational and measurement phases of simulations
scalable, while also making the connectivity of PEs scalable,
and requiring few connections to each PE.

Many modifications and other embodiments of the inven-
tion will come to mind to one skilled in the art to which this
invention pertains having the benefit of the teachings pre-
sented in the foregoing descriptions and the associated
drawings. Therefore, it is to be understood that the invention
is not to be limited to the specific embodiments disclosed
and that modifications and other embodiments are intended
to be included within the scope of the appended claims.
Although specific terms are employed herein, they are used
in a generic and descriptive sense only and not for purposes
of limitation.

What is claimed is:

1. A scalable computer architecture capable of performing
fully scalable simulations, said architecture comprising:

a plurality of processing elements; and

a plurality of interconnections between the plurality of

processing elements capable of interconnecting the
plurality of processing elements, wherein at least two
interconnections interconnect each processing element
to at least two other processing elements, wherein at
least one interconnection further interconnects at least
one processing element to at least one other processing
element located remote from the respective at least one
processing element,

wherein the computer architecture supports variations in

the number of processing elements, and wherein the
number of interconnections between processing ele-
ments is independent of the number of processing
elements so that the number of processing elements is
capable of changing without similarly changing the
number of interconnections between processing ele-
ments, thereby permitting connectivity between the
processing elements to be scalable.

2. A scalable computer architecture according to claim 1,
wherein the plurality of interconnections interconnect the
plurality of processing elements according to a fractal-type
method.

3. A scalable computer architecture according to claim 1,
wherein the plurality of interconnections interconnect the
plurality of processing elements according to a quenched
random method.

4. A scalable computer architecture according to claim 1,
wherein the plurality of interconnections include at least one
interconnection at each length scale of the plurality of
processing elements.

5. A scalable computer architecture according to claim 1,
wherein the plurality of processing elements are organized
in a one-dimensional topology.

6. A scalable computer architecture according to claim 1,
wherein the plurality of interconnections connect each pro-
cessing element to each neighboring processing element
located adjacent the respective processing element, and
wherein at least one interconnection further connects at least
one processing element to at least one other processing
element located remote from the respective at least one
processing element.

7. A scalable computer architecture according to claim 1,
wherein the plurality of processing elements are organized
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in a multi-dimensional topology, wherein the dimension of
the multi-dimensional topology is greater than one.

8. A scalable system to facilitate fully scalable simulations
comprising a plurality of processing elements, wherein each
processing element capable of being interconnected to at
least two other processing elements, wherein at least one
processing element is further capable of being intercon-
nected to at least one other processing element located
remote from the respective at least one processing element,
wherein the scalable system supports variations in the num-
ber of processing elements, and wherein the number of other
processing elements interconnected to each processing ele-
ment is independent of the number of processing elements
so that the number of processing elements is capable of
changing without similarly changing the number of other
processing elements interconnected to each processing ele-
ment, thereby permitting connectivity between the process-
ing elements to be scalable.

9. A scalable system according to claim 8, wherein the
plurality of processing elements are interconnected accord-
ing to a fractal-type method.

10. A scalable system according to claim 8, wherein the
plurality of processing elements are interconnected accord-
ing to a quenched random method.

11. A scalable system according to claim 8, wherein the
plurality of processing elements are interconnected such that
at least one pair of processing elements are interconnected at
each length scale of the plurality of processing elements.

12. A scalable system according to claim 8, wherein the
plurality of processing elements are organized in a one-
dimensional topology.

13. A scalable system according to claim 8, wherein the
plurality of processing elements are organized in a multi-
dimensional topology, wherein the dimension of the multi-
dimensional topology is greater than one.

14. A scalable system according to claim 8, wherein the
each processing element is interconnected to each neighbor-
ing processing element located adjacent the respective pro-
cessing element, and wherein at least one processing ele-
ment is interconnected to at least one other processing
element located remote from the respective at least one
processing element.

15. A method of fabricating a scalable computer archi-
tecture capable of performing fully scalable parallel discrete
event simulations, said method comprising:

organizing a first number of processing elements; and

interconnecting the first number of processing elements so

that each processing element is interconnected to at
least two other processing elements, and so that at least
one processing element is further interconnected to at
least one other processing element located remote from
the respective at least one processing element,
wherein the number of other processing elements inter-
connected to each processing element is independent of
the number of processing elements so that the number
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of processing elements is capable of changing without
similarly changing the number of other processing
elements interconnected to each processing element,
thereby permitting connectivity between the processing
elements to be scalable.

16. A method according to claim 15, wherein intercon-
necting the plurality of processing elements comprises inter-
connecting the plurality of processing elements according to
a fractal-type method.

17. A method according to claim 15, wherein intercon-
necting the plurality of processing elements comprises inter-
connecting the plurality of processing elements according to
a quenched random method.

18. A method according to claim 15, wherein intercon-
necting the plurality of processing elements comprises inter-
connecting the plurality of processing elements such that at
least one pair of processing elements are interconnected at
each length scale of the plurality of processing elements.

19. A method according to claim 15, wherein organizing
the plurality of processing elements comprises organizing
the plurality of processing elements in a one-dimensional
topology.

20. A method according to claim 15, wherein organizing
the plurality of processing elements comprises organizing
the plurality of processing elements in a multi-dimensional
topology, wherein the dimension of the multi-dimensional
topology is greater than one.

21. A method according to claim 15, wherein intercon-
necting the plurality of processing elements comprises inter-
connecting the each processing element to each neighboring
processing element located adjacent the respective process-
ing element, wherein at least one processing element is
interconnected at least one other processing element located
remote from the respective at least one processing element.

22. A method according to claim 15 further comprising:

changing the number of processing elements to a second

number; and interconnecting the second number of
processing elements so that each processing element is
interconnected to at least two other processing ele-
ments, and so that at least one processing element is
further interconnected to at least one other processing
element located remote from the respective at least one
processing element,

wherein the number of other processing elements inter-

connected to each processing element is independent of
the number of processing elements so that the number
of processing elements is capable of changing from the
first number to the second number without similarly
changing the number of other processing elements
interconnected to each processing element, thereby
permitting connectivity between the processing ele-
ments to be scalable.



